们,谁叫你们遇到的是我,”檀羽心中一阵轻笑,“想我檀羽学贯百家,这种小儿科的数字游戏岂能难得倒我。”
沉默了一会儿,檀羽要来一张纸,然后缓缓地说道:“我打算这样做。将这十四个人分成六个小组,其中三个小组只包含一个人,第四小组包括两个人、第五小组包括三个人、第六小组包括六个人。”檀羽一边说,一边在纸上比划了起来。
甲一、甲二、甲三、乙四、丙五、丁六。
“这里,甲代表包含一个哑巴的组、乙代表包含两个哑巴、丙代表包含三个哑巴、丁代表包含六个哑巴。后面的数字是这个小组的编号。此时,我开始询问他们:和你同组的人中是否有罪犯”众人一听,和他们事先的设想并不一致,无不好奇起来,纷纷凑近来看檀羽将要如何操作。
“由于甲组只包含一个哑巴,所以如果他不是罪犯,那么他的正常答案应为否,而如果他是罪犯,那么他的正常答案应为是,可因为他是罪犯、会故意捣乱,所以其答案仍为否。因此,不论何种情况,甲组的三个人一定没人交出铜钱。乙组中有两个哑巴,当其中没有罪犯或有两个罪犯时,我同样得不到铜钱;而当有一名罪犯时,则我将会得到一枚铜钱。丙组中有三个哑巴,当其中没有罪犯时,我将得不到铜钱;有一名罪犯时,我将得到两枚铜钱;有两名罪犯时,我将得到一枚铜钱。丁组中有六个哑巴,当其中没有罪犯时,我将得不到铜钱;有一名罪犯时,我将得到五枚铜钱;有两名罪犯时,我将得到四枚铜钱。”
“考虑到他们有可能会集体撒谎,所以我每问完一个问题后所得到的铜钱数、以及用十四去减这个数,将对应于同一种情况。所以,根据上面那几个数字,当我问完某一个问题后,我将得到如下几种可能的铜钱数。零枚或十四枚,表示这两名罪犯要么全在甲组中、要么全在乙组中;一枚或十三枚,表示罪犯一人在甲组中、一人在乙组中,或者两人全在丙组中;两枚或十二枚,表示罪犯一人在甲组中、一人在丙组中;三枚或十一枚,表示罪犯一人在乙组中、一人在丙组中;四枚或十枚,表示罪犯全在丁组中;五枚或九枚,表示罪犯一人在甲组中、一人在丁组中;六枚或八枚,表示罪犯一人在乙组中、一人在丁组中;七枚,表示罪犯一人在丙组中、一人在丁组中。”
“请注意,当铜数为零枚或十四枚、以及一枚或十三枚时,其对应着两种独立的情况。其中后一种情况较复杂,可能的罪犯将在八人中产生。但这并不能难倒我,我只需在第二轮问问题之前,将甲组的三人和丙组三人互换,其余人不变,再次询问同一问题,那么可能的罪犯人数将立即从八人减至原甲组和乙组的五人,这样我就能很容易在最后一轮中将罪犯是谁询问出来。比如,我可以把原甲组的三人分别放进四、五、六三组中,把原乙组的两人放进一、六两组,再把已经确定不是罪犯的哑巴任意地填充到六个小组中,只要总的分布人数仍然和刚开始一样即可。那么在最后一个问题后,我将得到六种独立的铜钱数,并相应对应于两名唯一可能的罪犯。”
“在所有情况中,最复杂的是七枚铜钱的情况,即一个罪犯在丙组中、一个罪犯在丁组中,可能的罪犯将在九个人中产生。此时,我只需将原丁组中的六个人平均分配到一、二、三、四、五、六组中,而原丙组中的三个人则分成一个、两个,分别放进五、六两组中。这样,我可能得到的七种铜钱数都将对应唯一的情况。即使其中最复杂的五枚、九枚或七枚铜钱数,也只有五个人可能是罪犯。这种情况与上面讨论过的情况一致,因此最后一轮的分配方式也一样。”
围观众人全都听傻了,直到檀羽停了许久才回过神来。袁粲完全不敢确信,用檀羽的方法反复试了十几次,不管什么情况,都能准确地找出那两名罪犯。他愣了半天,张大嘴
『加入书签,方便阅读』